

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP

Presented By MICHAEL WOLFF, PG

Erosion Study Area Manager

West Valley Demonstration Project
Quarterly Public Meeting
August 24, 2016

OUTLINE

- Study 1 Terrain Analysis, Age Dating, and Paleoclimate
- Study 2 Recent Erosion and Deposition Processes
- Study 3 Preliminary Erosion Modeling
- > Next Steps
- Questions

TASK STATUS:

- > Task 1.1: Mapping completed
- > Task 1.2: Field Reconnaissance in progress
- > Task 1.3: Site Prioritization completed
- > Task 1.4: Site Walkover completed
- > Task 1.5: Site Sampling nearly completed
- > Task 1.6: Sample Preparation and Selection for Dating in progress
- > Task 1.7: Sample Age Analysis, Geologic Interpretation -in progress
- > Task 1.8: Report start August 2016

Task 1.5: Key Sampling Locations

Task 1.5: Example – Abandoned Meander Area

Task 1.5: Example – Abandoned Meander - Channel

Task 1.5: Example - Sampling at Abandoned Meander

Trench MT-38 (location shown on Slide 6)

Wood sample collected for C14 dating

STUDY 2 - Recent Erosion and Deposition Processes

TASKS:

- > Task 2.1: Quantify Rainfall Rates and Snow Depth may use existing data from SDA
- > Task 2.2: Quantify Infiltration Capacity in progress
- ➤ **Task 2.3**: Quantify Flow Rates and Total Suspended Solids in Select Gullies see added task
- ➤ **Task 2.4**: Quantify Flow Rates and Total Suspended Solids at Select Stream Locations see added task
- > Task 2.5: Quantify Erodibility of Cohesive Sediment in progress
- > Task 2.6: Quantify Erodibility of Clastic Sediment in progress
- > Task 2.7: Quantify Topographic Characteristics of Select Gullies completed
- > Task 2.8: Reports in progress

Added task: Dr. Bennett recommended digital comparison of 2010 and 2015 LiDAR using change detection modeling owing to difficulty of installing instrumentation in steep and active gullies; this also provides a 5-year timeframe instead of one season.

STUDY 2 - Recent Erosion and Deposition Processes

TASKS:

Examples of Infiltration and Jet Testing (erodibility) Tasks 2.2, 2.5, and 2.6:

Jet testing in shallow pit

Infiltration testing

STUDY 3 — Preliminary Erosion Modeling

TASKS:

- > Task 3.1: New Data-Collection Support and Evaluation in progress
- ➤ **Task 3.2:** Preparatory Work for Model Selection and Component Testing in progress
- > Task 3.3: Design Model Calibration and Testing Strategy in progress
- > Task 3.4: Select, Extract, and Analyze Topographic Metrics in progress
- > Task 3.5: Generate Model Grids in progress
- ➤ **Task 3.6:** Design Strategy and Select Site for Model Validation in progress
- > Task 3.7: Report Progress to Agencies and Stakeholders in progress
- > Task 3.8: Identify, Obtain, and Become Familiar with Computing Resources
- in progress
- > Task 3.9: Create Preliminary Design for Future-Erosion Projection
- ➤ **Task 3.10:** Compile and Analyze New Available Climate/Hydrology Data and Define Parameter Ranges

STUDY 3 – Preliminary Erosion Modeling

Modeling Activities Completed Include:

- Assessed modeling improvements published since FEIS modeling (8-10 years ago)
- Completed preliminary review and evaluation of
 - Geomorphic processes
 - Mathematical methods for simulating the processes
 - Methods for evaluating uncertainty
- Developed a code structure that can readily incorporate external data such as digital topography data, etc.
- Developed code to extract and statistically analyze data used in FEIS modeling to assist in benchmarking uncertainty
- Completed quality assurance assessment of the methodology
- ➤ Created model grids from LiDAR for two areas: (1) Buttermilk Creek watershed, and (2) Franks Creek watershed, at five resolutions: 3, 6, 12, 24, and 48 feet
- Completed quality control evaluation for input of grids into erosion-modeling software

STUDY 3 — Preliminary Erosion Modeling

Modeling Activities Underway Include:

- Started developing code using most useful and computationally- efficient models currently available
- ➤ Testing a simple model for computational efficiency using various input parameters, algorithms, and grid spacings to determine where computational "logjams" occur
- Preparing model development documentation to provide a paper trail of the development process
- > Evaluating state-of-practice means of incorporating probabilistic methods for representing parameter ranges
- Evaluating state-of-practice means of evaluating uncertainty, including uncertainty growth with time

NEXT STEPS

- ✓ **Study 1** Additional data collection will be dependent on data gaps identified by modeling
- ✓ **Study 2** Continue collection of field data as needed for modeling; use change detection models to extract key information from comparison of the 2015 with earlier LiDAR data

✓ Study 3

- Continue building and testing model(s),
- Calibrate to past history
- Test on analogue watershed
- Run forward projections
- Evaluate uncertainty

QUESTIONS?